金狮镖局 Design By www.egabc.com

什么是『布隆过滤器』

布隆过滤器是一个神奇的数据结构,可以用来判断一个元素是否在一个集合中。很常用的一个功能是用来去重。在爬虫中常见的一个需求:目标网站 URL 千千万,怎么判断某个 URL 爬虫是否宠幸过?简单点可以爬虫每采集过一个 URL,就把这个 URL 存入数据库中,每次一个新的 URL 过来就到数据库查询下是否访问过。

select id from table where url = 'https://jaychen.cc'

但是随着爬虫爬过的 URL 越来越多,每次请求前都要访问数据库一次,并且对于这种字符串的 SQL 查询效率并不高。除了数据库之外,使用 Redis 的 set 结构也可以满足这个需求,并且性能优于数据库。但是 Redis 也存在一个问题:耗费过多的内存。这个时候布隆过滤器就很横的出场了:这个问题让我来。

相比于数据库和 Redis,使用布隆过滤器可以很好的避免性能和内存占用的问题。

布隆过滤器本质是一个位数组,位数组就是数组的每个元素都只占用 1 bit 。每个元素只能是 0 或者 1。这样申请一个 10000 个元素的位数组只占用 10000 / 8 = 1250 B 的空间。布隆过滤器除了一个位数组,还有 K 个哈希函数。当一个元素加入布隆过滤器中的时候,会进行如下操作:

  • 使用 K 个哈希函数对元素值进行 K 次计算,得到 K 个哈希值。
  • 根据得到的哈希值,在位数组中把对应下标的值置为 1。

举个"text-align: center">Redis 中的布隆过滤器的实现

看了上面的说明,必然会提出一个问题:当插入的元素原来越多,位数组中被置为 1 的位置就越多,当一个不在布隆过滤器中的元素,经过哈希计算之后,得到的值在位数组中查询,有可能这些位置也都被置为 1。这样一个不存在布隆过滤器中的也有可能被误判成在布隆过滤器中。但是如果布隆过滤器判断说一个元素不在布隆过滤器中,那么这个值就一定不在布隆过滤器中。简单来说:

  • 布隆过滤器说某个元素在,可能会被误判。
  • 布隆过滤器说某个元素不在,那么一定不在。

这个布隆过滤器的缺陷放到上面爬虫的需求中,可能存在某些没有访问过的 URL 可能会被误判为访问过,但是如果是访问过的 URL 一定不会被误判为没访问过。

Redis 中的布隆过滤器

redis 在 4.0 的版本中加入了 module 功能,布隆过滤器可以通过 module 的形式添加到 redis 中,所以使用 redis 4.0 以上的版本可以通过加载 module 来使用 redis 中的布隆过滤器。但是这不是最简单的方式,使用 docker 可以直接在 redis 中体验布隆过滤器。

> docker run -d -p 6379:6379 --name bloomfilter redislabs/rebloom
> docker exec -it bloomfilter redis-cli

redis 布隆过滤器主要就两个命令:

  • bf.add 添加元素到布隆过滤器中:bf.add urls https://jaychen.cc
  • bf.exists 判断某个元素是否在过滤器中:bf.exists urls https://jaychen.cc

上面说过布隆过滤器存在误判的情况,在 redis 中有两个值决定布隆过滤器的准确率:

  • error_rate :允许布隆过滤器的错误率,这个值越低过滤器的位数组的大小越大,占用空间也就越大。
  • initial_size :布隆过滤器可以储存的元素个数,当实际存储的元素个数超过这个值之后,过滤器的准确率会下降。

redis 中有一个命令可以来设置这两个值:

bf.reserve urls 0.01 100

三个参数的含义:

  • 第一个值是过滤器的名字。
  • 第二个值为 error_rate 的值。
  • 第三个值为 initial_size 的值。

使用这个命令要注意一点:执行这个命令之前过滤器的名字应该不存在,如果执行之前就存在会报错:(error) ERR item exists

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

标签:
Redis,布隆过滤器

金狮镖局 Design By www.egabc.com
金狮镖局 免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
金狮镖局 Design By www.egabc.com

评论“Redis 中的布隆过滤器的实现”

暂无Redis 中的布隆过滤器的实现的评论...