一、JSON 数据准备
首先准备一份 JSON 数据,这份数据共有 3560 条内容,每条内容结构如下:
本示例主要是以 tz(timezone 时区) 这一字段的值,分析这份数据里时区的分布情况。
二、将 JSON 数据转换成 Python 字典
代码如下:
三、统计 tz 值分布情况,以“时区:总数”的形式生成统计结果
要想达到这一目的,需要先将 records 转换成 DataFrame,DataFrame 是 Pandas 里最重要的数据结构,它可以将数据以表格的形式表示;然后用 value_counts()
方法汇总:
四、根据统计结果生成条形图
生成条形图之前,为了数据的完整,可以给结果中缺失的时区添加一个值(这里用Missing表示),而每条时区内容里缺失的值也需要添加一个未知的值(这里用Unknown表示):
然后使用 plot()
方法既可生成条形图:
到这里就是一个完整的处理 JSON 数据生成统计结果和条形图的例子;不过还可以对这份统计结果进行进一步的处理,以得到更加详细的结果。
每条数据里还有一个 agent 值,即浏览器的 USER_AGENT 信息,通过这一信息可以得知所使用的操作系统,所以对上一步生成的统计结果还可以按操作系统的不同加以区分。
agent 值:
五、将条形图以操作系统(Windows/非Windows)加以区分
不是所有的数据都有 a 这个字段,首先过滤掉没有 agent 值的数据; 然后根据时区和操作系统列表对数据分组,然后 对分组结果进行计数:
最后选择出现次数最多的10个时区的数据 生成一张条形图:
这样就得到了以不同操作系统加以区分的条形图统计结果:
以上就是Python处理JSON数据并生成条形图的全部内容,希望本文对大家学习Python和JSON都能有所帮助。
更新日志
- 陈洁仪.1994-心痛【立得唱片】【WAV+CUE】
- 车载必备专用超级选曲《劲爆中文DJ》2CD[WAV+CUE]
- 群星《民歌流淌60年(黑胶CD)》2CD[WAV+分轨]
- 群星《美丽时光》紫银合金AQCD[WAV+CUE]
- 群星《12大巨星畅销精选集》[WAV分轨][1.1G]
- 华语排行冠军曲《百事音乐风云榜》[WAV+CUE][1G]
- 奔驰汽车音乐圣经《醇声典范[白金嗓子] 男极声》音乐传真[WAV+CUE][1G]
- 陈影《如影随形HQ》头版限量[低速原抓WAV+CUE]
- 黄乙玲1996-心痛酒来洗[台湾首版][WAV+CUE]
- 曾庆瑜1990-随风而逝[日本东芝1A1首版][WAV+CUE]
- 群星.2015-凭着爱ADMS2CD【华纳】【WAV+CUE】
- 陈冠希.2017-一只猴子3部曲【摩登天空】【WAV+CUE】
- 金元萱.1996-迷迷糊糊【宝丽金】【WAV+CUE】
- 齐秦《燃烧爱情》马来西亚版[WAV+CUE][1G]
- 动力火车《结伴》2024最新 [FLAC分轨][1G]