简介
LRU(Least Recently Used)最近最少使用,最近有时间和空间最近的歧义,所以我更喜欢叫它近期最少使用算法。它的核心思想是,如果一个数据被访问过,我们有理由相信它在将来被访问的概率就越高。于是当LRU缓存达到设定的最大值时将缓存中近期最少使用的对象移除。LRUCache内部使用LinkedHashMap来存储key-value键值对,并将LinkedHashMap设置为访问顺序来体现LRU算法。
无论是对某个key的get,还是set都算做是对该key的一次使用。当set一个不存在的key,并且LRU Cache中key的数量超过cache size的时候,需要将使用时间距离现在最长的那个key从LRU Cache中清除。
LRU Cache实现
在Java中,LRUCache是通过LinkedHashMap实现的。鄙人照猫画虎,实现一个Python版的LRU Cache(可能和其他大神的实现有所区别)。
首先,需要说明的是:
LRU Cache对象内部会维护一个 双端循环链表 的 头节点
LRU Cache对象内部会维护一个dict
内部dict的value都是Entry对象,每个Entry对象包含:
- key的hash_code(hash_code = hash(key),在本实现中,hash_code相同的不同key,会被当作一个key来处理。因此,对于自定义类,应该实现魔术方法:__hash__)
- v - (key, value)对中的value
- prev - 前一个对象
- next - 后一个对象
具体实现是:
当从LRU Cache中get一个key的时候:
- 计算该key的hash_code
- 从内部dict中获取到entry
- 将该entry移动到 双端循环链表 的 第一个位置
- 返回entry.value
当向LRU Cache中set一个(key, value)对的时候:
计算该key的hash_code,
从LRU Cache的内部dict中,取出该hash_code对应的old_entry(可能不存在),然后根据(key, value)对生成一个new_entry,之后执行:
- dict[hash_code] = new_entry
- 将new_entry提到 双端循环链表 的第一个位置
- 如果old_entry存在,则从链表中删除old_entry
- 如果是新增了一个(key, value)对,并且cache中key的数量超过了cache size,那么将双端链表的最后一个元素删除(该元素就是那个最近最少被使用的元素),并且从内部dict中删除该元素
HashMap的实现原理
(面试过程中也经常会被问到):数组和链表组合成的链表散列结构,通过hash算法,尽量将数组中的数据分布均匀,如果hashcode相同再比较equals方法,如果equals方法返回false,那么就将数据以链表的形式存储在数组的对应位置,并将之前在该位置的数据往链表的后面移动,并记录一个next属性,来指示后移的那个数据。
注意:数组中保存的是entry(其中保存的是键值)
Python实现
class Entry: def __init__(self, hash_code, v, prev=None, next=None): self.hash_code = hash_code self.v = v self.prev = prev self.next = next def __str__(self): return "Entry{hash_code=%d, v=%s}" % ( self.hash_code, self.v) __repr__ = __str__ class LRUCache: def __init__(self, max_size): self._max_size = max_size self._dict = dict() self._head = Entry(None, None) self._head.prev = self._head self._head.next = self._head def __setitem__(self, k, v): try: hash_code = hash(k) except TypeError: raise old_entry = self._dict.get(hash_code) new_entry = Entry(hash_code, v) self._dict[hash_code] = new_entry if old_entry: prev = old_entry.prev next = old_entry.next prev.next = next next.prev = prev head = self._head head_prev = self._head.prev head_next = self._head.next head.next = new_entry if head_prev is head: head.prev = new_entry head_next.prev = new_entry new_entry.prev = head new_entry.next = head_next if not old_entry and len(self._dict) > self._max_size: last_one = head.prev last_one.prev.next = head head.prev = last_one.prev self._dict.pop(last_one.hash_code) def __getitem__(self, k): entry = self._dict[hash(k)] head = self._head head_next = head.next prev = entry.prev next = entry.next if entry.prev is not head: if head.prev is entry: head.prev = prev head.next = entry head_next.prev = entry entry.prev = head entry.next = head_next prev.next = next next.prev = prev return entry.v def get_dict(self): return self._dict if __name__ == "__main__": cache = LRUCache(2) inner_dict = cache.get_dict() cache[1] = 1 assert inner_dict.keys() == [1], "test 1" cache[2] = 2 assert sorted(inner_dict.keys()) == [1, 2], "test 2" cache[3] = 3 assert sorted(inner_dict.keys()) == [2, 3], "test 3" cache[2] assert sorted(inner_dict.keys()) == [2, 3], "test 4" assert inner_dict[hash(2)].next.v == 3 cache[4] = 4 assert sorted(inner_dict.keys()) == [2, 4], "test 5" assert inner_dict[hash(4)].v == 4, "test 6"
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对的支持。
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 海来阿木《西楼情歌》开盘母带[WAV+CUE][1.1G]
- TheGesualdoSix-QueenofHeartsLamentsandSongsofRegretforQueensTerrestrialandCele
- 王建杰2011-荣华富贵[喜玛拉雅][WAV+CUE]
- 孙悦2024-时光音乐会[金蜂][WAV+CUE]
- 秦宇子.2020-#YUZI【海蝶】【FLAC分轨】
- 苏有朋.1994-这般发生【华纳】【WAV+CUE】
- 小虎队.1990-红蜻蜓【飞碟】【WAV+CUE】
- 雷婷《寂寞烟火HQⅡ》头版限量[低速原抓WAV+CUE][1G]
- 赵传1996《黑暗英雄》台湾首版[WAV+CUE][1G]
- 张敬轩2005《我的梦想我的路》几何娱乐[WAV+CUE][1G]
- 群星《人到四十男儿情(SRS+WIZOR)》[原抓WAV+CUE]
- 马久越《上善若水HQCDII》[低速原抓WAV+CUE]
- 龚玥《女儿情思》6N纯银SQCD【WAV+CUE】
- 张惠妹《你在看我吗》大碟15 金牌大风[WAV+CUE][1G]
- 群星《左耳·听见爱情》星文唱片[WAV+CUE][1G]