K-means算法简介
K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高,不同簇中数据相似度较低。
K-MEANS算法是输入聚类个数k,以及包含 n个数据对象的数据库,输出满足方差最小标准k个聚类的一种算法。k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。
核心思想
通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小。
k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。
k-means算法的基础是最小误差平方和准则,K-menas的优缺点:
优点:
原理简单
速度快
对大数据集有比较好的伸缩性
缺点:
需要指定聚类 数量K
对异常值敏感
对初始值敏感
K-means的聚类过程
其聚类过程类似于梯度下降算法,建立代价函数并通过迭代使得代价函数值越来越小
适当选择c个类的初始中心;
在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;
利用均值等方法更新该类的中心值;
对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。
该算法的最大优势在于简洁和快速。算法的关键在于初始中心的选择和距离公式。
K-means 实例展示
python中km的一些参数:
sklearn.cluster.KMeans( n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm='auto' ) n_clusters: 簇的个数,即你想聚成几类 init: 初始簇中心的获取方法 n_init: 获取初始簇中心的更迭次数,为了弥补初始质心的影响,算法默认会初始10个质心,实现算法,然后返回最好的结果。 max_iter: 最大迭代次数(因为kmeans算法的实现需要迭代) tol: 容忍度,即kmeans运行准则收敛的条件 precompute_distances:是否需要提前计算距离,这个参数会在空间和时间之间做权衡,如果是True 会把整个距离矩阵都放到内存中,auto 会默认在数据样本大于featurs*samples 的数量大于12e6 的时候False,False 时核心实现的方法是利用Cpython 来实现的 verbose: 冗长模式(不太懂是啥意思,反正一般不去改默认值) random_state: 随机生成簇中心的状态条件。 copy_x: 对是否修改数据的一个标记,如果True,即复制了就不会修改数据。bool 在scikit-learn 很多接口中都会有这个参数的,就是是否对输入数据继续copy 操作,以便不修改用户的输入数据。这个要理解Python 的内存机制才会比较清楚。 n_jobs: 并行设置 algorithm: kmeans的实现算法,有:'auto', ‘full', ‘elkan', 其中 ‘full'表示用EM方式实现 虽然有很多参数,但是都已经给出了默认值。所以我们一般不需要去传入这些参数,参数的。可以根据实际需要来调用。
下面展示一个代码例子
from sklearn.cluster import KMeans from sklearn.externals import joblib from sklearn import cluster import numpy as np # 生成10*3的矩阵 data = np.random.rand(10,3) print data # 聚类为4类 estimator=KMeans(n_clusters=4) # fit_predict表示拟合+预测,也可以分开写 res=estimator.fit_predict(data) # 预测类别标签结果 lable_pred=estimator.labels_ # 各个类别的聚类中心值 centroids=estimator.cluster_centers_ # 聚类中心均值向量的总和 inertia=estimator.inertia_ print lable_pred print centroids print inertia 代码执行结果 [0 2 1 0 2 2 0 3 2 0] [[ 0.3028348 0.25183096 0.62493622] [ 0.88481287 0.70891813 0.79463764] [ 0.66821961 0.54817207 0.30197415] [ 0.11629904 0.85684903 0.7088385 ]] 0.570794546829
为了更直观的描述,这次在图上做一个展示,由于图像上绘制二维比较直观,所以数据调整到了二维,选取100个点绘制,聚类类别为3类
from sklearn.cluster import KMeans from sklearn.externals import joblib from sklearn import cluster import numpy as np import matplotlib.pyplot as plt data = np.random.rand(100,2) estimator=KMeans(n_clusters=3) res=estimator.fit_predict(data) lable_pred=estimator.labels_ centroids=estimator.cluster_centers_ inertia=estimator.inertia_ #print res print lable_pred print centroids print inertia for i in range(len(data)): if int(lable_pred[i])==0: plt.scatter(data[i][0],data[i][1],color='red') if int(lable_pred[i])==1: plt.scatter(data[i][0],data[i][1],color='black') if int(lable_pred[i])==2: plt.scatter(data[i][0],data[i][1],color='blue') plt.show()
可以看到聚类效果还是不错的,对k-means的聚类效率进行了一个测试,将维度扩宽到50维
数据规模
消耗时间
数据维度
10000条
4s
50维
100000条
30s
50维
1000000条
4'13s
50维
对于百万级的数据,拟合时间还是能够接受的,可见效率还是不错,对模型的保存与其它的机器学习算法模型保存类似
from sklearn.externals import joblib joblib.dump(km,"model/km_model.m")
总结
以上就是本文关于详解K-means算法在Python中的实现的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:
Python实现调度算法代码详解
Python算法输出1-9数组形成的结果为100的所有运算式
Python编程实现蚁群算法详解
如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 好薇2024《兵哥哥》1:124K黄金母盘[WAV+CUE]
- 胡歌.2006-珍惜(EP)【步升大风】【FLAC分轨】
- 洪荣宏.2014-拼乎自己看【华特】【WAV+CUE】
- 伊能静.1999-从脆弱到勇敢1987-1996精选2CD【华纳】【WAV+CUE】
- 刘亮鹭《汽车DJ玩主》[WAV+CUE][1.1G]
- 张杰《最接近天堂的地方》天娱传媒[WAV+CUE][1.1G]
- 群星《2022年度发烧天碟》无损黑胶碟 2CD[WAV+CUE][1.4G]
- 罗文1983-罗文甄妮-射雕英雄传(纯银AMCD)[WAV+CUE]
- 群星《亚洲故事香港纯弦》雨果UPMAGCD2024[低速原抓WAV+CUE]
- 群星《经典咏流传》限量1:1母盘直刻[低速原抓WAV+CUE]
- 庾澄庆1993《老实情歌》福茂唱片[WAV+CUE][1G]
- 许巍《在别处》美卡首版[WAV+CUE][1G]
- 林子祥《单手拍掌》华纳香港版[WAV+CUE][1G]
- 郑秀文.1997-我们的主题曲【华纳】【WAV+CUE】
- 群星.2001-生命因爱动听电影原创音乐AVCD【MEDIA】【WAV+CUE】