有时候我们的数据是按某个频率收集的,比如每日、每月、每15分钟,那么我们怎么产生对应频率的索引呢?pandas中的date_range可用于生成指定长度的DatetimeIndex。
我们先看一下怎么生成日期范围:pd.date_range(startdate,enddate)
1.生成指定开始日期和结束日期的时间范围:
In:import pandas as pd index = pd.date_range('4/1/2019','5/1/2019') print(index) Out: DatetimeIndex(['2019-04-01', '2019-04-02', '2019-04-03', '2019-04-04', '2019-04-05', '2019-04-06', '2019-04-07', '2019-04-08', '2019-04-09', '2019-04-10', '2019-04-11', '2019-04-12', '2019-04-13', '2019-04-14', '2019-04-15', '2019-04-16', '2019-04-17', '2019-04-18', '2019-04-19', '2019-04-20', '2019-04-21', '2019-04-22', '2019-04-23', '2019-04-24', '2019-04-25', '2019-04-26', '2019-04-27', '2019-04-28', '2019-04-29', '2019-04-30', '2019-05-01'], dtype='datetime64[ns]', freq='D')
也可以只指定开始日期或结束日期,但这时必须要输入一个时间长度,并且指定输入的是开始时间还是结束时间,如果不指定默认是开始时间。
date_range(startdate/enddate,periods)
In:print(pd.date_range(start = '4/1/2019',periods = 10)) Out:DatetimeIndex(['2019-04-01', '2019-04-02', '2019-04-03', '2019-04-04', '2019-04-05', '2019-04-06', '2019-04-07', '2019-04-08', '2019-04-09', '2019-04-10'], dtype='datetime64[ns]', freq='D') In:print(pd.date_range(start = '5/1/2019',periods = 10)) Out:DatetimeIndex(['2019-05-01', '2019-05-02', '2019-05-03', '2019-05-04', '2019-05-05', '2019-05-06', '2019-05-07', '2019-05-08', '2019-05-09', '2019-05-10'], dtype='datetime64[ns]', freq='D')
现在我们已经知道怎么生成日期范围了,但是上面我们生成的日期的时间间隔都是天,接下来告诉大家怎么生成其他时间频率的日期范围。
要生成按某个频率计算的日期范围,只需要在date_range后加上freq就可以了。比如,生成每小时间隔的时间:
In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = 'h')) Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:00:00', '2019-05-01 02:00:00', '2019-05-01 03:00:00', '2019-05-01 04:00:00', '2019-05-01 05:00:00', '2019-05-01 06:00:00', '2019-05-01 07:00:00', '2019-05-01 08:00:00', '2019-05-01 09:00:00'], dtype='datetime64[ns]', freq='H')
生成时间间隔为3个小时的时间:
In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = '3h')) Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:00:00', '2019-05-01 02:00:00', '2019-05-01 03:00:00', '2019-05-01 04:00:00', '2019-05-01 05:00:00', '2019-05-01 06:00:00', '2019-05-01 07:00:00', '2019-05-01 08:00:00', '2019-05-01 09:00:00'], dtype='datetime64[ns]', freq='H')
生成时间间隔为1小时30分的时间:
In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = '1h30min')) Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:30:00', '2019-05-01 03:00:00', '2019-05-01 04:30:00', '2019-05-01 06:00:00', '2019-05-01 07:30:00', '2019-05-01 09:00:00', '2019-05-01 10:30:00', '2019-05-01 12:00:00', '2019-05-01 13:30:00'], dtype='datetime64[ns]', freq='90T')
python还可以生成其他不规则频率的时间,比如每月的第一个工作日,每月的第一个日历日等
生成每月的第一个工作日:
In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'BMS')) Out:DatetimeIndex(['2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01', '2019-05-01', '2019-06-03', '2019-07-01', '2019-08-01', '2019-09-02', '2019-10-01', '2019-11-01', '2019-12-02'], dtype='datetime64[ns]', freq='BMS')
生成每月的第一个日历日:
In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'MS')) Out:DatetimeIndex(['2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01', '2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01', '2019-09-01', '2019-10-01', '2019-11-01', '2019-12-01'], dtype='datetime64[ns]', freq='MS')
有一种很实用的频率类,为“WOM”,即每月的几个星期几。比如每月的第三个星期五。如果我们每月的第三个星期五发工资,这样就可以很方便的知道今年每个月的工资日了。
In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'WOM-3FRI')) Out:DatetimeIndex(['2019-01-18', '2019-02-15', '2019-03-15', '2019-04-19', '2019-05-17', '2019-06-21', '2019-07-19', '2019-08-16', '2019-09-20', '2019-10-18', '2019-11-15', '2019-12-20'], dtype='datetime64[ns]', freq='WOM-3FRI')
下面是python可使用的时间序列的基础频率表:
别名
偏移量类型
说明
D
Day
每日历日
B
BusinessDay
每工作日
H
Hour
每小时
T或min
Minute
每分钟
S
Second
每秒
L或ms
Milli
每毫秒
U
Micro
每微秒
M
MonthEnd
每月最后一个日历日
BM
BusinessMonthEnd
每月最后一个工作日
MS
MonthBegin
每月第一个日历日
BMS
BusinessMonthBegin
每月第一个工作日
W-MON、W-TUE
Week
每周的星期几
WOM-1MON、WOM-2MON
WeekofMonth
每月第几周的星期几
Q-JAN、Q-FEB
QuarterEnd
每个季度对应的该月份的最后一个日历日
BQ-JAN、BQ-FEB
BusinessQuarterEnd
每个季度对应的该月份的最后一个工作日
QS-JAN、QS-FEB
QuarterBegin
每个季度对应的该月份的第一个日历日
BQS-JAN、BQS-FEB
QuarterBegin
每个季度对应的该月份的第一个工作日
A-JAN、B-FEB
YearEnd
每年指定月份的最后一个日历日
BA-JAN、BA-FEB
BusinessYearEnd
每年指定月份的最后一个工作日
AS-JAN、AS-FEB
YearBegin
每年指定月份的第一个日历日
BAS-JAN、BAS-FEB
BusinessYearBegin
每年指定月份的第一个工作日
以上所述是小编给大家介绍的python时间序列按频率生成日期的方法详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】