tensorflow中的梯度计算和更新
为了解决深度学习中常见的梯度消失(gradient explosion)和梯度爆炸(gradients vanishing)问题,tensorflow中所有的优化器tf.train.xxxOptimizer都有两个方法:
- compute_gradients
- apply_gradients
compute_gradients
对于compute_gradients方法,计算var_list中参数的梯度,使得loss变小。默认情况下,var_list为GraphKeys.TRAINABLE_VARIABLES中的所有参数。
compute_gradients方法返回由多个(gradients, variable)二元组组成的列表。
compute_gradients( loss, var_list=None, gate_gradients=GATE_OP, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None )
apply_gradients
对于apply_gradients方法,根据compute_gradients的返回结果对参数进行更新
apply_gradients( grads_and_vars, global_step=None, name=None )
梯度裁剪(Gradient Clipping)
tensorflow中裁剪梯度的几种方式
方法一tf.clip_by_value
def clip_by_value(t, clip_value_min, clip_value_max, name=None):
其中,t为一个张量,clip_by_value返回一个与t的type相同、shape相同的张量,但是新tensor中的值被裁剪到了clip_value_min和clip_value_max之间。
方法二:tf.clip_by_global_norm
def clip_by_global_norm(t_list, clip_norm, use_norm=None, name=None):
其中,t_list为A tuple or list of mixed Tensors, IndexedSlices, or None。clip_norm为clipping ratio,use_norm指定global_norm,如果use_norm为None,则按global_norm = sqrt(sum([l2norm(t)**2 for t in t_list]))计算global_norm。
最终,梯度的裁剪方式为
可知,如果clip_norm > global_norm, 则不对梯度进行裁剪,否则对梯度进行缩放。
scale = clip_norm * math_ops.minimum( 1.0 / use_norm, constant_op.constant(1.0, dtype=use_norm.dtype) / clip_norm)
方法的返回值为裁剪后的梯度列表list_clipped和global_norm
示例代码
optimizer = tf.train.AdamOptimizer(learning_rate) gradients, v = zip(*optimizer.compute_gradients(loss)) gradients, _ = tf.clip_by_global_norm(gradients, grad_clip) updates = optimizer.apply_gradients(zip(gradients, v),global_step=global_step)
方法三tf.clip_by_average_norm
def clip_by_average_norm(t, clip_norm, name=None):
t为张量,clip_norm为maximum clipping value
裁剪方式如下,
其中,avg_norm=l2norm_avg(t)
方法四:tf.clip_by_norm
def clip_by_norm(t, clip_norm, axes=None, name=None):
t为张量,clip_norm为maximum clipping value
裁剪方式为
示例代码
optimizer = tf.train.AdamOptimizer(learning_rate, beta1=0.5) grads = optimizer.compute_gradients(cost) for i, (g, v) in enumerate(grads): if g is not None: grads[i] = (tf.clip_by_norm(g, 5), v) # clip gradients train_op = optimizer.apply_gradients(grads)
注意到,clip_by_value、clib_by-avg_norm和clip_by_norm都是针对于单个张量的,而clip_by_global_norm可用于多个张量组成的列表。
Tensorflow,梯度裁剪
更新日志
- 陈果《有了你》UPM24K金碟[日本限量版][WAV+CUE]
- 群星《新说唱2024 第12期 (下)》[FLAC/分轨][506.43MB]
- 李常超 (Lao乾妈)《天生江湖》[320K/MP3][168.84MB]
- 李常超 (Lao乾妈)《天生江湖》[FLAC/分轨][633.83MB]
- 群星《雨果发烧碟二十》UPMAGCD2024[WAV+CUE]
- 刘德丽《赤的疑惑》限量1:1黄金母盘直刻[低速原抓WAV+CUE]
- 柏菲·珞叔作品集《金色大厅2》限量开盘母带ORMCD[低速原抓WAV+CUE]
- Gareth.T《sad songs(Explicit)》[320K/MP3][29.03MB]
- Gareth.T《sad songs(Explicit)》[FLAC/分轨][152.85MB]
- 证声音乐图书馆《海风摇曳·盛夏爵士曲》[320K/MP3][63.06MB]
- 龚玥《金装龚玥HQCD》头版限量[WAV分轨]
- 李小春《吻别》萨克斯演奏经典[原抓WAV+CUE]
- 齐秦《辉煌30年24K珍藏版》2CD[WAV+CUE]
- 证声音乐图书馆《海风摇曳·盛夏爵士曲》[FLAC/分轨][321.47MB]
- 群星 《世界经典汽车音乐》 [WAV分轨][1G]